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A variety of structurally fascinating and biologically active
natural products can be obtained from marine sources. The
isolation, structural formulation, and biological evaluation of
natural products from the aquatic biomass constitutes a frontier
of growing importance in chemistry. In some instances, where
the structures are especially novel or the biological profiles of
action hold particular promise, a program in total synthesis may
be appropriate. We felt that such a situation pertained in the case
of dysidiolide (1), a sesterterpene isolated from the marine sponge
Dysidea etheriade Laubenfels.1 From a biogenetic point of view,
structure1 corresponds to a novel cyclization mode of an acyclic
C25 isoprenoid precursor. Moreover, the difficultly available
dysidiolide is a potent inhibitor of the human cdc25A protein
phosphatase.2,3 Since this class of enzymes (cdc25A, B and C)
is involved in dephosphorylation of cyclin-dependent kinases, it
has been proposed that inhibitors could produce specific cell cycle
arrest. Early results have shown that dysidiolide inhibits growth
of lung carcinoma and murine leukemia cell lines.1

We approached the total synthesis problem from the perspective
of testing a dioxolenium (Gassman) type of activated dienophile
(Figure 1).4,5 We hoped to study a Diels-Alder reaction of the
type 2 + 4, wherein the presumed mechanistically active
intermediate (3) would undergo cycloaddition in the regiosense
indicated, and with tight diastereoface governance based on
differing demands of R1 and R2. Most interesting was the matter
of endo/exo selectivity. To reach5, it would be necessary for
the dioxolenium function of3 to direct endo in the Diels-Alder

step.4,5a,6 The realization of this line of thinking is described below
in the context of a total synthesis of1.
The specific version of2 which was selected to serve as the

operative dienophile was acetal8. The synthesis of this com-
pound was accomplished starting with known dioxolane6
(Scheme 1).7 Addition of lithium dimethylcuprate to6, followed
by trapping with ethyl iodoacetate under the conditions indicated,8

afforded olefin7. The ester function was converted to a protected
two-carbon alcohol residue, as shown, to provide dienophile8.
The specific version of4 selected as the operative diene was

structure14. The synthesis of14 commenced with the com-
mercially available unsaturated ester9. The latter was converted
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Figure 1.

Scheme 1a

aReagents and conditions: (a) Me2CuLi, Et2O,-45 °C; ICH2CO2Et,
HMPA, -55 °C to rt (30-55%). (b) Superhydride, THF,-78 to-20
°C; imidazole, TBDPSCl,-20 °C to rt (68%). (c) i. LAH, Et2O; ii. TsCl,
pyridine, 0 °C; iii. NaI, acetone,∆ (92% overall). (d) DME, HMPA,
-55 °C to rt (49%). (e) Tf2O, 2,6-di-tert-butyl-4-methylpyridine, CH2Cl2
(87%). (f) CH2dCHSnBu3, Pd(PPh3)4, LiCl, THF, ∆ (80%).
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to known iodide10 as described.9 This compound served as an
alklylating agent with respect to the lithium enolate of 2-meth-
ylcyclohexanone (11)10 giving rise, albeit thus far in modest yield,
to ketone12.11 This substance was converted to vinyl triflate
1312 and then, by a Stille cross coupling,13 to diene14.
Diels-Alder reaction between8 and14was conducted under

catalysis by TMSOTf4b as shown (Scheme 2). There was thus
obtained a 67% yield of adduct15.14 In addition, ca. 5% of a
stereoisomer (structure not yet determined) was obtained. From
adduct15, we advanced to dysidiolide in the manner shown.
Cleavage of the ketal15 in 15 was followed by Wolff-Kishner
reduction of the aldehyde function in16 to produce, upon con-
comitant desilylation, alcohol17. Following oxidation, aldehyde
18 was in hand. Addition of 3-lithiofuran16 to this compound,
under the conditions shown, gave rise to19 and its C4 stereoi-
somer.17 Photooxidation of19with singlet oxygen16,18provided

a 77% yield of dysidiolide identical in all respects with the natural
product by chromatographic and high-field NMR criteria.1 As
is the case with the natural product, dysidiolide, in solution, exists
as a mixture of C25 diastereomers. Upon crystallization, this
carbon emerges in the relative configuration shown.1

The power of the Gassman dioxolenium dienophile method is
underscored by the fact that trisubstituted analogues of8, bearing
ester dienophiles instead of the acetal, were ineffective in the
Diels-Alder reaction. We also note that high selectivity for endo
addition was observed when a dioxane acetal of (Z)-2-methyl-
2-butenal was used as the dienophile in a Diels-Alder reaction
with diene14. The adduct from this reaction was elaborated,
leading to “dysidiolides” stereoisomeric with1 at carbons 6 and
7. The synthesis and evaluation of these stereo analogues will
be the subject of future disclosures.
With dysidiolide available to us through a concise total

synthesis (albeit for the moment as the racemate), we have begun
to investigate its biological profile. Indeed, within 24 h, dsyidi-
olide (2-50µM) caused growth arrest on four human cancer cell
lines. In PC3, TSU-Pr1, and DU145 prostate cancer cells, growth
arrest was accompanied by massive apoptosis. In the MCF7
breast cancer cell line, the drug caused loss of the G2/M peak
and accumulation of cells in G1. These data are consistent with
the induction by dysidiolide of cell cycle specific growth arrest
followed by apoptosissa form of programmed cell deathsin
human cancer cells. At the chemical level, we are now attempting
to obtain ketone12, or a functionally equivalent congener, in
optically pure form, in a straightforward manner so as to pave
the way for the synthesis of enantiomerically pure dysidiolide.
Also, studies are currently in progress to ascertain the specificity
of the biological target of dysidiolide and to pin down its effects
on cell cycle progression and cytotoxicity in detail. Results in
both areas will be described in due course.
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Scheme 2a

aReagents and conditions: (a) TMSOTf, CH2Cl2, -90 °C (67%). (b)
Montmorillonite K 10, CH2Cl2 (89%). (c) H2NNH2, KOtBu, n-butanol,
sealed tube, 150°C (74%). (d) TPAP, NMO, ms, CH2Cl2 (90%). (e)
3-Lithiofuran, THF, -78 °C (34% + 56% C4 epimer). (f) i.p-
Nitrobenzoic acid, Ph3P, DEAD, benzene; ii. DIBAL, CH2Cl2, 0 °C (81%
overall). (g) O2, Rose Bengal, DIPEA, CH2Cl2, hν, -78 °C (77%).
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